

Advanced Oxidation for Taste & Odor in Drinking Water and Scale Up of UV AOP Reactors from Bench Tests using CFD Modeling

Keith Bircher, David McCarty Calgon Carbon Corporation

K-Water

November 28, 2011

Chemviron Carbon

Who Is Calgon Carbon Corporation?

- We solve customer purification and separation problems with a variety of technologies
- World's Largest Producer of Granular Activated Carbon. Carbon Technology is our core competency
- Diverse Product Portfolio
- 1000+ employees
- 240 Patents
- 10 sales offices 6 countries
- 14 manufacturing facilities 6 countries

- Revenues: > \$500 M
- On New York Stock Exchange (CCC)
- 60 + Years of Experience in Drinking Water and Wastewater Treatment

Calgon Carbon UV History

- Started in Advanced Oxidation (MP + Hydrogen Peroxide) in 1985, acquired by CCC in 1996
- Progressed to Drinking Water 1997, CCC innovation for Cryptosporidium
- Entered Wastewater Market with in 2004
- Entered Ballast Water Market Hyde Marine (UV and filtration) in 1995, acquired by CCC 2010

Why is Calgon Carbon UV Unique?

- Use advanced science and technology to develop products
- World Leader in Advanced Oxidation 25 years experience and over 400 installations
- Validate all products true sizing and performance verification, not just "manufacturer's claims"
- Have <u>never</u> had to 'upgrade' a system due to performance or design issues
- Highest powered lamps on the market for both DW and WW – basis for low Operating and Maintenance and smallest footprint
- Focus on real Cost of Ownership for lowest 20 year Net Present Value

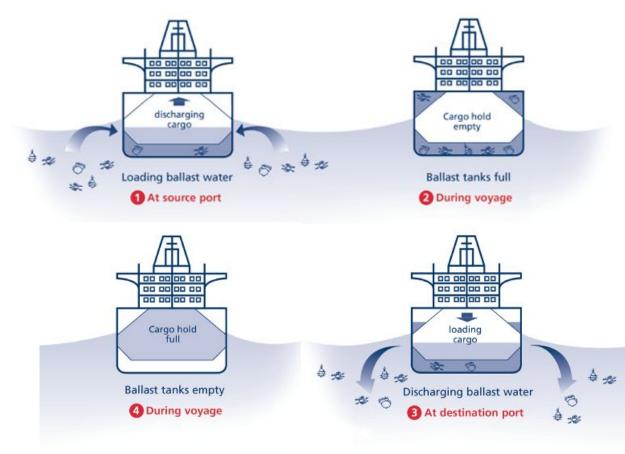
Calgon Carbon UV Technologies

2000

UV Manufacturing Facility

Rayox® UV-Oxidation Systems

Rayox[®] Tower at Gencorp Aerojet

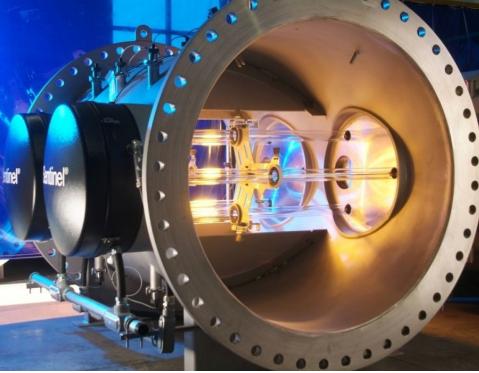

Rayox®

Making Water and Air Safer and Cleaner

Chemviron Carbon

Ballast Water Treatment

§The issue: Transfer of invasive species via ships' ballast water



UV Disinfection

Drinking Water Sentinel

Sentinel[®] Chevron AOP

- Disinfection and Taste & Odor Destruction
- 2 18 lamp configuration
 San Francisco 9 lamps
 Cincinnati 5 lamps,
 Boston 5 Lamps
 Scottsdale 18 lamps
- Only 1.8m long with up to 360,000 watts!
- Also available in 600mm 9x10 kW version

White River – Indianapolis (5) 1200mm 20 kW reactors 454 MLD

San Francisco, CA (12) Chevron Reactors 1,211 MLD

Sentinel[®] Drinking Water Installations

- Montreal Canada 2,950 MLD
- Boston MA 1703 MLD
- Washington DC 1,135 MLD
- San Francisco CA –1,211 MLD
- Cincinnati OH 870 MLD
- Winnipeg, MB 780 MLD
- Johor Singapore 454 MLD
- Indianapolis IN 454 & 151 MLD
- E.L. Smith, AB 360 MLD
- Stromlo, AU 284 MLD
- Rossdale, AB 185 MLD
- Kelowna, BC 185 MLD
- West View, PA 151 MLD
- Harnett County, NC 136 MLD
- Pawtucket, RI 119 MLD
- Burl Oak, ON 121 MLD
- Mountain House, CA 114 MLD

Calgon Carbon AOP Experience

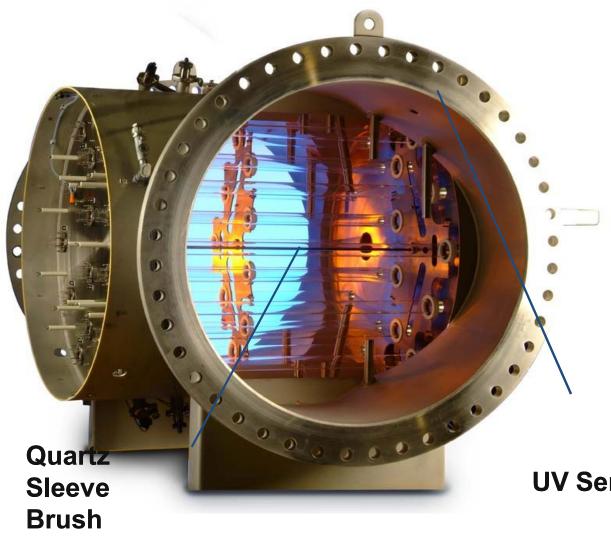
				# & type					#& type
Customer	City	State	Process	of lamp	Customer	City	State	Process	of lamp
R F Weston - Groveland Wells	Groveland	MA	UV OX/GAC	4 x 30	Roy F Weston - Pine Bluff	Pine Bluff	AR	UVOX	3 x 30
Norair engineering - Greenwood	Greenwood	VA	UV OX/GAC	1 x 30	Solarchem	Markham	ON	UV OX	
URS Radion	Haverton	PA	UV OX/GAC	3 x 30	Solarchem	Markham	ON	UV OX	3 x 30
International Technology Corp - Fort Ord	Fort Ord	CA	UV OX/GAC	12 x 30	Hoechst Celanese - Spartanburg (2)	Spartanburg	SC	UV OX	3 x 30
Unifield Engineering - transbas	Billings	MT	UV OX/GAC	2 x 30	Whiting Turner - China lake	China Lake	CA	UV OX	2 x 30
Trans Mountain Pipe Line Co	Burnaby	BC	UV OX/GAC	3 x 30	EA Engineering - McClellan AFB	Sacramento	CA	UV OX	6 x 30
O'Brien & Gere - Picilio Farms	Coventry	RI	UV OX/GAC	2 x 30	University of Waterioo	Waterloo	ON	UV OX	1 x 1
Raytheon	Waco	TX	UV OX/GAC	4 x 30	Masco Corporation	Troy	MI	UV OX	2 x 30
TRW - VSSI	Mesa	AZ	UV OX/GAC	3 x 30	Shipley - Capaccio	Mariboro	MA	UV OX	2 x 30
Carneco Corporation	Blind River	ON	UV OX/GAC	9 x 30	Roy F Weston - Charles George Landfill	Tyngsboro	MA	UV OX	3 x 30
Michigan Dept of Environ Quality - Rancor	Cadillac	MI	UV OX/GAC	4 x 30	Laidiaw Waste Management	Adrian	MI	UV OX	1 x 30
Ransom Environmental	Wakefleid	MA	UV OX/GAC	2 x 30	Western Summit Constructors	Littleton	CO	UV OX	1 x 30
Parsons - Pharmacia & Upjohn	NorthHaven		UV OX/GAC	2-4x30	Secor - Beechcraft	Boulder	co	UVOX	4 x 30
Lowry Environmental	Aurora	CO	UV OX/GAC	1 x 30	CPQ Resisa	Spain	00	UVOX	3 x 30
ICI	Montreal	QC	UV OX	3 x 30	Phelps Dodge Magnet Wire Co	Fort Wayne	IN	UV OX	1 x 30
Environment Canada	Ottawa	ON	UVOX	3 x 10	Harding Lawson - Sullivan's Ledge	New Bedford	MA	UVOX	4 x 30
Domtar	Trenton	ON	UVOX				MN	UV OX	4 x 30 1 x 30
				1x6	Harris Contracting	Minneapolis	DATA		
U S Navy	Indian Head		UVOX	4 x 30	Mitsul Toatsu Plant Services Inc	Japan	-	UVOX	1 x 1
T R Miler	Brewton	AL	UVOX	2 x 30	Hallburton NUS - Brooks AFB	San Antonio	TX	UV OX	1 x 30
Nestle's Beverage	Freehold	NJ	UV OX	2 x 5	Freer Mechanical - Lockheed	Fort Worth	TX	UV OX	6 x 30
Atochem	France		UVOX	3 x 6	Stx Nations Housing	Ohsweken	ON	UV OX	3 x 30
RMOW	Elmira	ON	UVOX	8 x 30	Osram Sylvania	Hilisboro	NH	UV OX	1 x 30
Uniroyal Chemical - Process Water	Elmira	ON	UVOX	9 x 30	Earth Burners - Dwyer Fire	Duluth	MN	UV OX	2 x 30
Uniroyal Chemical - Ground Water	Elmira	ON	UV OX	9 x 30	Montgomery Watson	Griffith	IN	UV OX	1 x 30
T R Miller	Brewton	AL	UV OX	2 x 30	Eka Nobel	Marletta	GA	UV OX	3 x 30
International Paper	Joplin	MO	UV OX	2 x 30	Jacobs Engineering - Otis AFB	Cape Cod	MA	UV OX	3 - 2 x 30
Mobil Oll	Albany	NY	UV OX	3 x 30	U S Fliter	Warrendale	PA	UV OX	3 x 1
W R Grace	Woburn	MA	UV OX	2 x 5	Radian Corporation - Travis AFB	Faifield	CA	UV OX	2 x 30
Unocal	Fremont	CA	UV OX	1 x 30	TransAmerica Life Assurance Co	Waterloo	ON	UV OX	1 x 10
Ambassador Laundry	Santa Barb	CA	UV OX	2 x 5	GenCorp Aerolet	Sacramento	CA	UV OX	21 x 30
Imperial OII	Troy	ON	UV OX	1 x 30	OHM - Maryland Wood	Trenton	MD	UV OX	2 x 30
Mobil Oil - South Salem	Hawthorne	NY	UVOX	1 x 5	OHM - Vance AFB	Enid	OK	UV OX	3 x 30
Rohr Industries	Riverside	CA	UVOX	1 x 30	CH2M Hill - McClellan AFB	Sacramento	CA	UV OX	1 x 30
Superior Plating Inc	Minneapolis		UVOX	1 x 5	Geomatrix	Mountain View	CA	UVOX	2 x 30
Hydro Quebec	Gentily	QC	UVOX	1 x 30	Environment Canada	Ottawa	ON	UVOX	1 x 1
Trade Waste	Australia	60	UVOX	1x6	Daejo Biotech Corp	Korea		UVOX	1x1
N C Rubber	Kitchener	ON	UVOX	1 x 10			UT	UV OX	1 x 30
					Pacificorp	Salt Lake City			
B P Research	Cleveland	OH	UVOX	1 x 5	U S Fliter	Puyallup	WA	UV OX	1 x 30
Martin Marletta - Furr	Charlotte	NC	UVOX	1x5	ChemWaste Management	Arlington	OR	UV OX	1 x 30
Martin Marietta	Denver	co	UVOX	1 x 30	Alexander von Humboldt (Germany)	India	2003	UV OX	1 x 1
L'Air Liquid	France	122.3	UVOX	2 x 5	Siemens Microelectronics	Scottsdale	AZ	UV OX	2 x 30
Uniroyal Chemical	Elmira	ON	UVOX	6 x 30	Akzo Nobel	Sweden		UV OX	1 x 1
Artes Ingegneria Spa - Bono	Italy		UV OX	2 x 10	Cariton University	Ottawa	ON	UV OX	1 x 1
Hoechst Celanese - Needmore	Salisbury	NC	UV OX	6 x 30	Filtration Treatment	Pearl Harbour	HI	UV OX	1 x 30
E G & G Florida	KSC	FL	UV OX	3 x 30	Mitsul Toatsu Plant Services Inc	Japan		UV OX	1 x 10

Calgon Carbon AOP Experience (cont'd)

			•	# & type		•			# & type
Customer	City	State	Process	of lamp	Customer	City	State	Process	
Trade Waste	Australia	1998 ^{an}	UV OX	2 x 30	CCOT	Tucson	AZ	UV OX	1x1
United Technologies	East Hartfor	(CT	UV OX	1 X 1	Nan Ya Plastics (EBSL)	Talwan		UV OX	4 x 30
Imperial OII - North Property	Toronto	ON	UV OX	1 x 10	CCC	Pittsburgh	PA	UV OX	2-1x1
Hercules Canada Inc	Burlington	ON	UV OX	1 x 10	Hewlett Packard	Puerto Rico		UV OX	2 x 30
Hoechst Celanese - Spartonburg (1)	Spartanburg	SC	UV OX	3 x 30	Oriental Chemical Industries	Korea		UV OX	1 x 1
Six Nations Council	Ohsweken	ON	UV OX	1 x 30	OHM ABL Corporation	Keyser	WV	UV OX	2 x 30
Halliburton NUS - Kelly AFB	San Antonio	TX	UV OX	1 x 30	CCOT	Netherlands		UV OX	1 x 6
GREEFF Fabrics Inc	Santa Monio	CA	UV OX	1 x 30	Becton Dickenson	East Rutherford	NJ	UV OX	1 x 30
Geiman Sciences Inc	Ann Arbor	MI	UV OX	3 x 30	GenCorp Aerolet	Sacramento	CA	UV OX	9 x 30
Root Lowell Manufacturing	Lowell	MI	UV OX	2 x 30	Young Chang - Samsung	Korea		UV OX	3 x 30
Solarchem	Markham	ON	UV OX	1 x 1	August Mack Environmental Inc	Wildwood	FL	UV OX	4 x 30
Roy F Weston - Kelly AFB	San Antonio	TX	UV OX	9 x 30	NangYan Tech University	Singapore		UV OX	1 x 1
Roy F Weston - Kelly AFB	San Antonio	TX	UV OX	3 x 30	Sabic	Saudi Arabla		UV OX	1 x 30
Hoechst Celanese - Perimeter	Salisbury	NC	UVOX	9 x 30	Chemviron	United Kingdom		UV OX	1 x 1
Environment Canada	Ottawa	ON	UV OX	1 x 1	Mitsul Toatsu Plant Services	Japan		UV OX	1 x 30
H E Sargent	Winthrop	ME	UVOX	2 x 30	Radian Intenational - Travis AFB	Fairfield	CA	UV OX	2 x 30
Hercules Aerospace Co	Rocket Cen		UVOX	2 x 30	Brown & Williamson Tobacco Corp	Macon	GA	UV OX	1 x 1
Saco Defense	Saco	ME	UVOX	1 x 30	T R Miler	Brewton	AL	UVOX	4 x 30
Texaco	Port Arthur		UVOX	1x1	Sigma Environmental	Oak Creek	WI	UVOX	1 x 30
MacCemar	Belgium	14	UVOX	1 x 1	R F Weston - Kelly AFB Zone 4	San Antonio	TX	UVOX	3 x 30
Purex Industries inc	Milvile	NJ	UVOX	6 x 30	Koester Environmental - Robins AFB	Warner Robins	GA	UV OX	6 x 30
Hargis & Associates	La Jolla	CA	UVOX	1 x 30	Kimberty Clark	Owensboro	KY	UVOX	1 x 30
	Richland	WA	UVOX	1 x 10		Tocele	UT	UVOX	1 x 30
Westinghouse Hanford Co		KA			Alled Signal NASA	KSC			
Foley Company	Desoto	NY	UVOX	1 x 30			FL	UVOX	Special
Collymore Associates - Servall Laundry	Bronx		UVOX	3 x 30	Salcon Limuted	Singapore		UV OX	6 x 1
BASF	Wyandotte		UVOX	2 x 30	Honeywell	Tampa	FL	UVOX	1 x 30
GenCorp Aerojet	Sacramento		UVOX	3 x 30	Honeywell	Tampa	FL	UV OX	4 x 30
Imperial OII - South Property	Toronto	ON	UVOX	1 x 10	B-Project	Japan	1000	UV OX	1 x 10
Davidson Instrument Panel	Farmington		UVOX	1 x 30	Kimberly Clark	Owensboro	KY	UV OX	2 x 30
U S Army - APG	APG	MD	UVOX	2 x 1 x 30	CFE - MCEC	Japan		UVOX	1 x 30
Fagan	Australia		UV OX	4 x 30	National Institure of Health	Bethesda	MD	UV OX	1 x 30
Fagan - NZFC	New Zealan		UV OX	4 x 30	Cornell	Ithaca	NY	UV OX	2 x 30
Jalbert Associates	Norfolk	VA	UVOX	2-4 x 30	August Mack Environmental Inc	Wildwood	FL	UV OX	3 x 30
Cliba Gelgy	Cambridge		UVOX	1 x 30	Mercury Aircraft	Hammondsport	NY	UV OX	1 x 30
THAN	Pleasant Hil	IIA	UV OX	2 x 30	Aberdeen / IT Group	Edgewood	MD	UV OX	3 x 3D
Dainippon ink & Chemicais	Japan		UV OX	1 X 1	Kelly Air Force Base	San Antonio	TX	UV OX	3 x 30
Malcolm Pimle	Vineland	NJ	UV OX	1 x 1	SAIC Kelly AFB	San Antonio	TX	UV OX	3 x 30
Huls Canada	Toronto	ON	UV OX	1 x 30	Eaton	Westminster	SC	UV OX	2 x 30
Adtechs - Ontario Hydro	Bruce Penn	ON	UV OX	1 x 10	Eatontown	Eatontown	NJ	UV OX	3 x 3D
Foster Wheeler - Kelly AFB	San Antonio	TX	UV OX	6 x 30	Danville	Danville	PA	UV OX	1 x 30
Fagan	Australia		UV OX	1 x 1	Lockheed-Martin	Littleton	CO	UV OX	2 x 30
University of Wester Ontario	London	ON	UV OX	1 x 1	Honeywell (Besly Site)	Greenfield	MA	UV OX	4 x 30
Coding Products	Kalkaska	MI	UV OX	2 x 30	Parsons Engineering (Honeywell)	Sarasota	FL	UV OX	2 x 30
Argonne National Laboratory	Argonne	IL.	UVOX	1 x 30	Nucleoelectrica Argentina (NA SA)	Buenos Alres	Argentina		1 x 30
General Electric	Hudson Fall		UVOX	2 x 30	Blind River Refinery (Cameco Corp.)	Blind River	ON	UV OX	3 x 30
Quanterra labs	Sacramento		UVOX	pump	Gulfstream WWTP	Savannah	GA	UV OX	1 x 30
		0.225			O'Brien & Gere of N. A.(GE Hudson Falls)	Hudson Falls	NY	UVOX	3 x 30

Drinking Water – AOP Conclusion

- Calgon Carbon UV has the longest history and experience in advanced oxidation over any other UV company (> 25 years)
- Calgon Carbon UV has installed the largest medium pressure drinking water disinfection systems in the world
- Calgon Carbon has more AOP installations (>350) than any other UV company
- Calgon Carbon UV has third-party tested its DW AOP reactors in Portland USA
- The combination of drinking water experience, expertise in AOP, and third party testing for T&O AOP is evidence that Calgon Carbon UV is the most qualified company for all Drinking Water AOP projects


Sentinel[®] Chevron 600mm 9 x 10 kW

- UV Intensity Sensors
 - Ø One sensor per lamp
 - Ø Mechanical cleaning
 - Reference sensors yearly calibration
- Instrumentation
 - Ø Temperature alarm
 - Ø Moisture alarm
 - Ø Wiper system alarm
- Ballasts
 - Ø Electromagnetic
 - Ø One lamp per ballast

Sentinel Chevron 18 x 20 kW

- **UV Intensity Sensors**
 - One sensor per Ø lamp
 - Mechanical Ø cleaning
 - Ø Reference sensors yearly calibration
- Instrumentation
 - **Temperature alarm** Ø
 - Moisture alarm Ø
 - Wiper system Ø alarm
- **Ballasts**
 - Ø Electromagnetic
 - One lamp per Ø ballast

UV Sensors

Electromagnetic versus Electronic Ballast

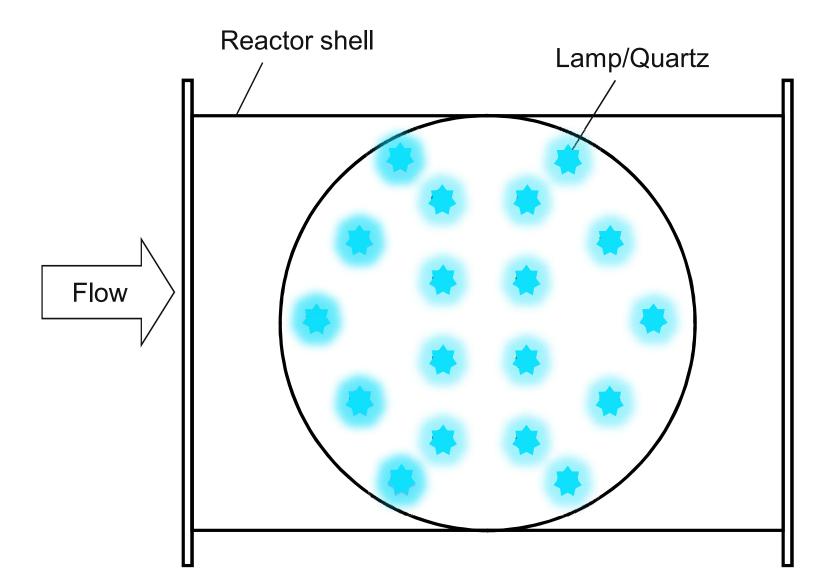
ELECTROMAGNETIC

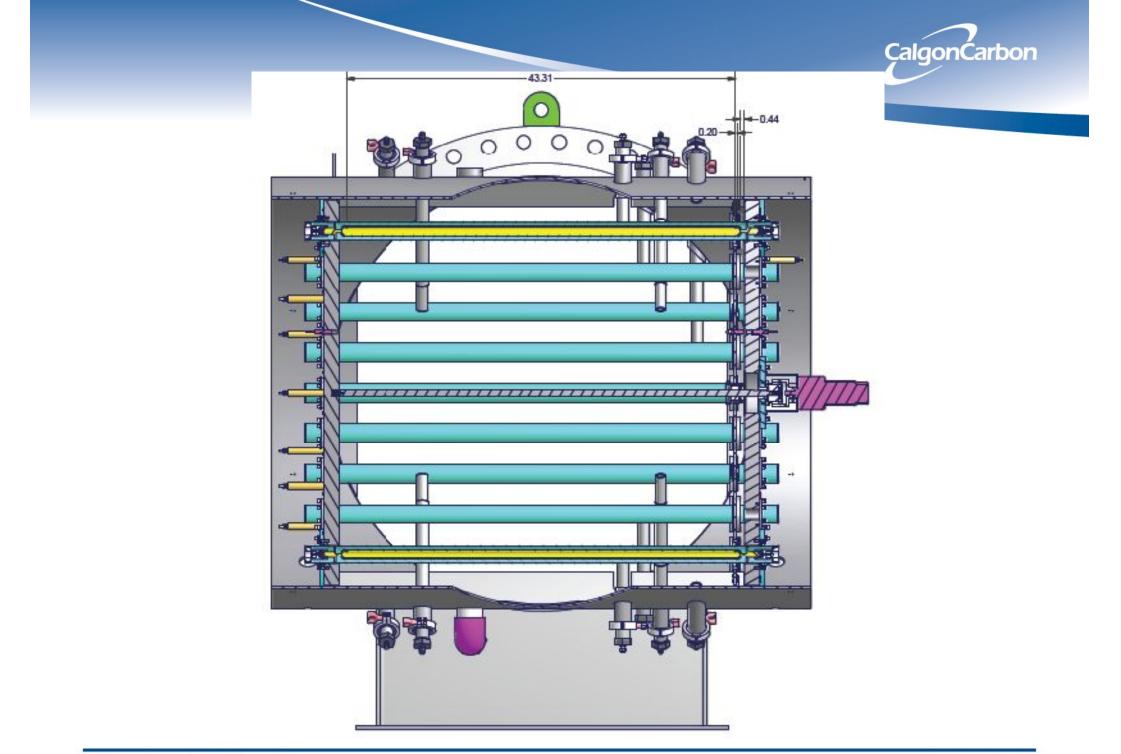
- More tolerant of line voltage variations (-40% - +10%)
- Control cabinet can be installed up to 152m from the reactor
- Attenuates voltage spikes
 6000:1
- More reliable and robust than electronic ballasts – less affected by temperature
- Rapid lamp warm up and restrike
 - As low as 1 min. to full power and 2.5 min. for hot re-strike)

ELECTRONIC

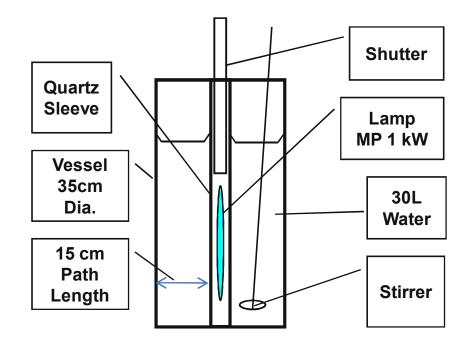
- Power surge or dips will extinguish lamps or destroy the ballast
- Cabinets must be installed within 20 meters of the respective reactor
- Spikes will shut off or damage the ballast card
- Must be in air conditioned room
- 10 minutes for lamps to come up to full power

Mechanical Quartz Cleaning




- Low maintenance– replace brushes
 only every 5 years
- No chemical costs, hassles, waste, inventory, equipment, piping
- •No elastomer seals that can burn with UV and leak

Reactor details and design

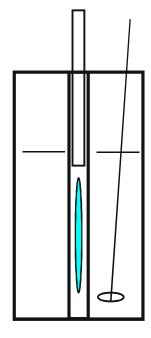


K Water Siheung Design Test

- Used Batch Reactor
 - 30 L water for the test
 - More accurate than collimated beam
- Used 1 kW Medium Pressure Lamp
 - Same spectral Output as Full Scale Reactors
 - Reduces scale up errors for MP lamp spectral output
- Used 14 cm Path Length
 - More accurate scale-up than Collimated Beam
- Multiple exposures on same water
 - Reduces dosing and sample errors

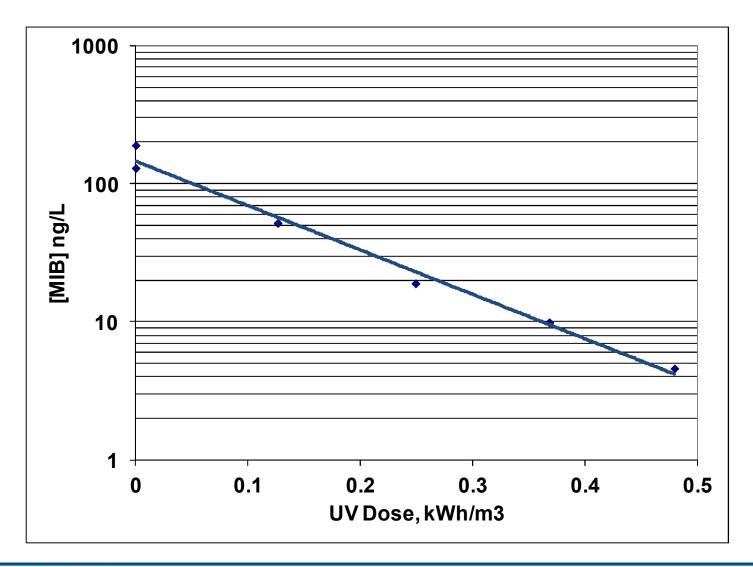
Analysis of the Siheung Water

Analysis Parameter	Units	Result
TSS (Total Suspended Solids)	ppm	<2
TDS (Total Dissolved Solids)	ррт	120
Conductivity	uS/cm	176.6
рН	No Units	6.84
COD (Chemical Oxygen Demand)	ррт	4
TOC (Total Organic Carbon)	ppm	1.13
Iron (Fe Total)	ррт	<0.04
Mg (Magnesium Hardness)	ppm (as CaCO3)	22.5
Ca (Calcium Hardness)	ppm (as CaCO3)	58.8
Hardness (Total)	ppm (as CaCO3)	81.3
Alkalinity (Methyl)	ppm (as CaCO3)	55
Common Anions (IC)		
Fluoride (F-)	ррт	<0.1
Chloride (Cl-)	ppm	10.6
Bromide (Br-)	ррт	<0.2
Nitrate (NO3-)	ppm	10.7
Phosphate (PO4-)	ppm	<0.5
Sulfate (SO4-)	ррт	13.1



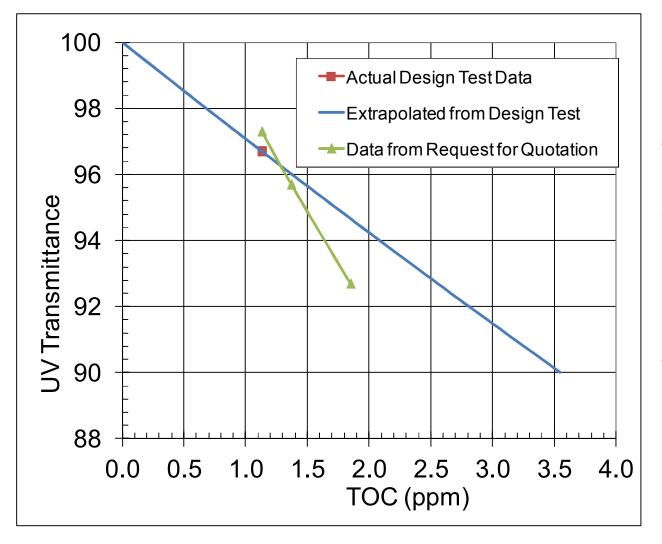
UV Transmittance of the Siheung Water

	Received	Received water
Wavelength	water Abs.	%Т
200	1.607	2.5
210	1.321	4.8
220	0.656	22.1
230	0.154	70.1
240	0.033	92.7
250	0.016	96.4
254	0.015	96.6
260	0.012	97.3
270	0.01	97.7
280	0.009	97.9
290	0.008	98.2
300	0.007	98.4


Design Test Results

Sample ID	UV Dose (kWh/m³)	рН	H2O2 (ppm)	MIB (ppt)
1-0	0.00	6.79	9.7	190
1-1	0.13	6.77	9.5	52
1-2	0.25	6.78	9.4	19
1-3	0.37	6.82	9.1	9.9
1-4	0.48	6.82	8.9	4.6

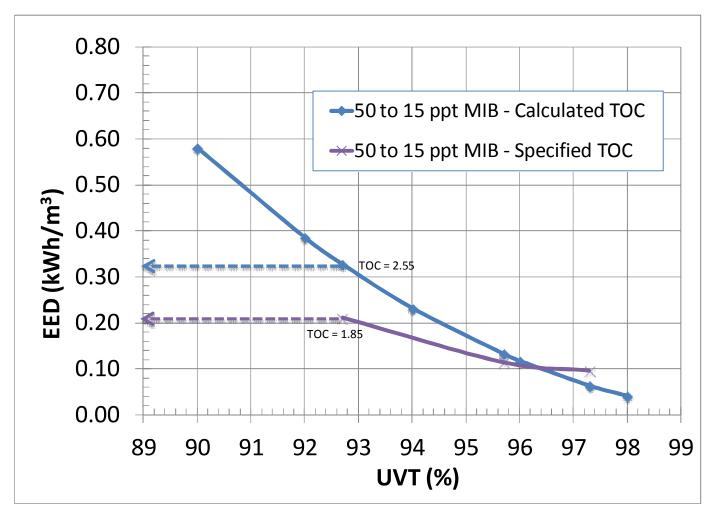
Design Test Results, 9.7 ppm H₂O₂


Scale-up: Slope (EE/O) from graph is adjusted for:

- UV Transmittance
 - from 96 to 92.7%T design reduces slope
- TOC
 - higher TOC reduces slope
- Peroxide Concentration
 - Higher peroxide increases slope
- Path Length
 - Longer path length to absorb UV in full-scale reactor make better use of UV – increases slope

All this can be done with CFD or using a spreadsheet

UV Transmittance vs TOC

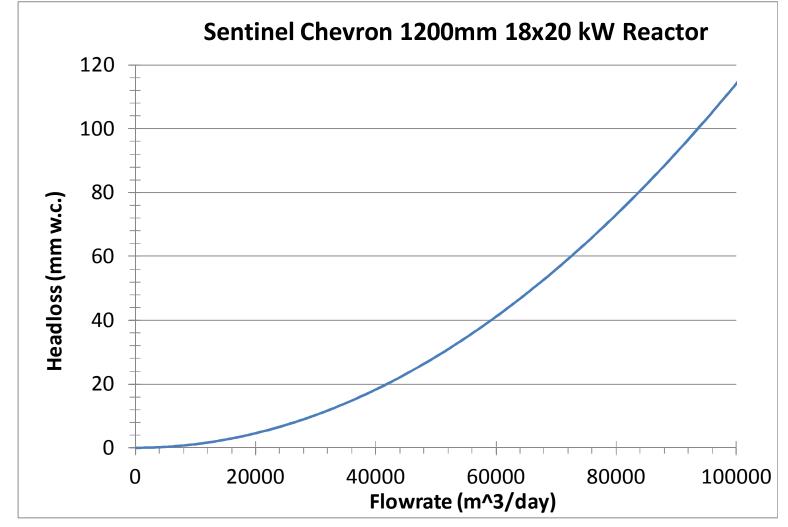


 At these high UVT values UVT is proportional to TOC
 Extrapolation should pass through 100%T
 Request for Quotation values do not follow this rule
 Therefore at design UVT of 92.7% TOC of 1.85 is too low

Results in system that is too small

EED required vs. UVT for different TOC curves (10ppm H_2O_2)

- Different design TOC values result in different EED values
- System would require
 50% higher dose if
 TOC projected from
 design test is used



Design Options

- Assume Specified TOC at 92.7%T of 1.85 ppm
 EED = 0.21
- Requires 4 reactors each with 18 x 20 kW lamps
 - Equivalent to 8 reactors each with 16 x 12 kW lamps for 760 mm system
- > To save space can arrange as 2 trains each with 2 reactors
- Overall pressure drop less than 4 trains with 760mm pipe diameter

Pressure drop of Sentinel 18 x 20 kW Reactor

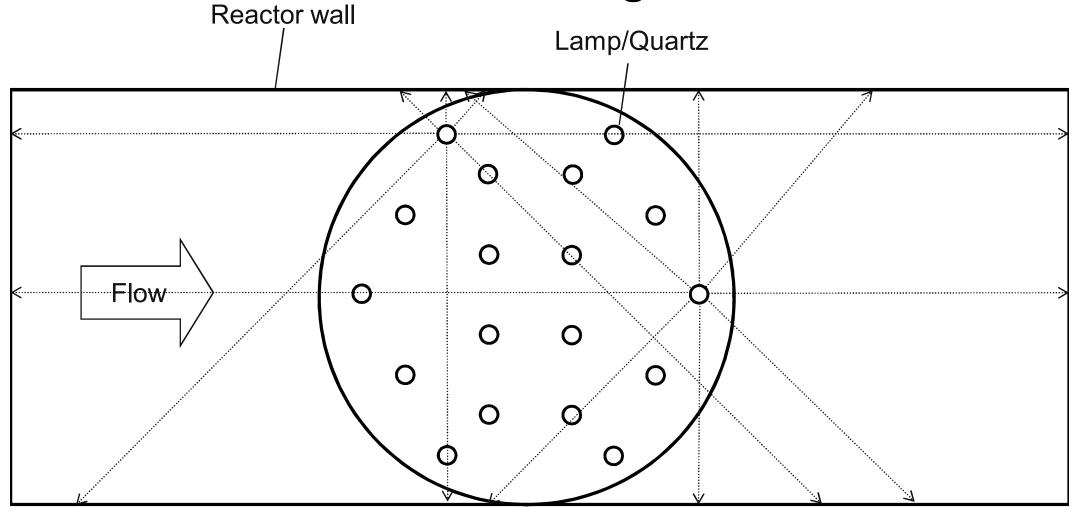
Pressure drop – 2, 3 and 4 trains

	Sentinel 1200 mm Reactor	Sentinel 1200 mm Reactor	Sentinel 1200 mm Reactor	16 Lamp 760mm Reactor
Trains	2	3	4	4
Pipe Diameter mm	1200	1200	1200	760
Length of pipe m	5	5	5	5
Total Flow, m3/d	129,000	129,000	129,000	129,000
Flow/Train, m3/d	64,500	43,000	32,250	32,250
Reactors per train	2	1.5	1	2
Flow m3/s	0.747	0.498	0.373	0.373
Pipe velocity m/s	0.66	0.44	0.33	0.82
Velocity Head Pipe, mm	22	10	6	34
Entrance/Exit Loss, mm	26	11	6	39
Valves, mm wc	13	6	3	20
Friction, mm	0.8	0.4	0.2	2.6
Reactors, mm	82	31	13	151
Total Pressure Drop, mm wc	122	49	23	213

Life Cycle Cost

- Operating # of Lamps and Power should be based on average operating UVT, not design UVT
 - If not could result in selection of the more expensive system that does not turndown as effectively
- Must include Ballast cost should use number of ballasts installed, not ballasts operating
 - $\circ\,$ Ballast life guarantee not based on operating hours
- Must include Quartz Sleeve and Wiper Costs

IF ALL OF THESE ITEMS ARE NOT INCLUDED, THE TRUE COST OF OWNERSHIP IS NOT BEING REPRESENTED FAIRLY AND UV SYSTEM COMPARISONS ARE INACCURATE!



Critical design factors

- Primary Design Factors
- > **Design flowrate**: Determines the number of lamps, sizing, power consumption
- Target contaminants: Rate of reaction with •OH radicals and/or direct photolysis affects sizing
- Influent and effluent concentrations: High log-reduction goals require more lamps, bigger footprint
- UV Transmittance: Low background UVT
 less direct and indirect photolysis, so more UV and/or peroxide are required
- Secondary Design Factors:
- COD: Consumes •OH radicals
- Alkalinity/pH: Determine the relative quantities of carbonate and bicarbonate in the water, both of which consume •OH radicals
- > Iron: Affects the UV transmittance of the water, increases fouling potential.
- > **Nitrate**: Absorbs UV below 250 nm that would otherwise photolyze H_2O_2

Variable Reactor Path Length

Presented at IUVA Conferences: Paris (May, 2011) and Toronto, September, 2011

SCALE UP OF UV AOP REACTORS FROM BENCH TESTS USING CFD MODELING

Keith Bircher, Mai Vuong, Brad Crawford,

Calgon Carbon Corporation Markham, Ontario, Canada

Mark Heath, Jeff Bandy

Carollo Engineers Boise, Idaho, USA

Background on Scale up Electrical Energy per Order (EEO)

- EEO is used to compare the performance of various full scale AOP technologies
- most parameters that affect EEO (lamp output, lamp efficiency, path length) can be scaled up from laboratory to full-scale without much difficulty
- EEO cannot be used to predict the hydraulic or mixing efficiency of a flow through reactor

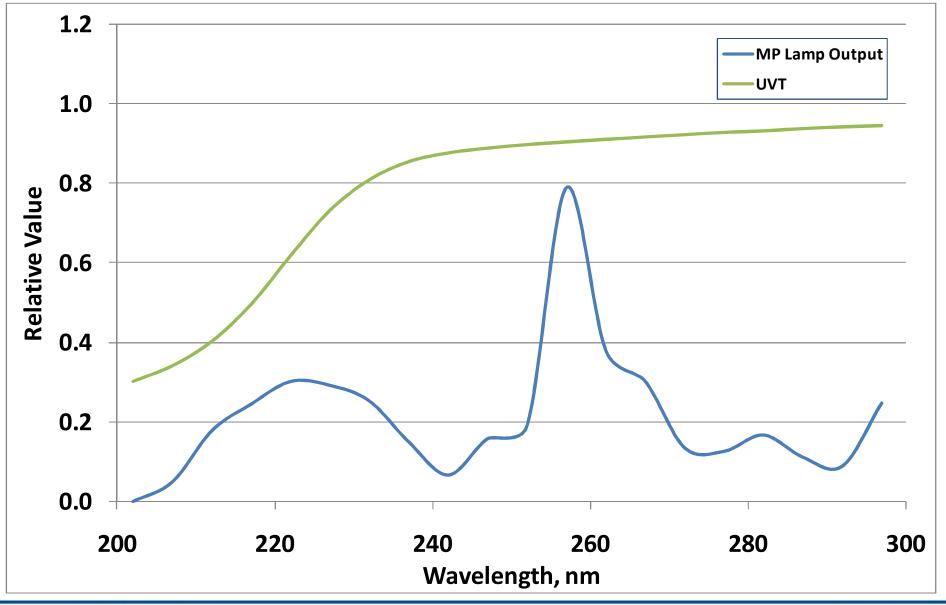
Dose per log inactivation

- A new metric is proposed that uses bench scale testing to determine the UV Dose required per log destruction of a particular contaminant (D_L)
- However dose is not measured in Electrical Energy but in peroxide weighted fluence in the same way as dose is calculated in a disinfection reactor (weighted germicidally)
- D_L can be used in Computational Fluid Dynamic modeling (CFD) to predict the hydraulic or mixing efficiency of a flow through reactor

Dose per log (D_L)

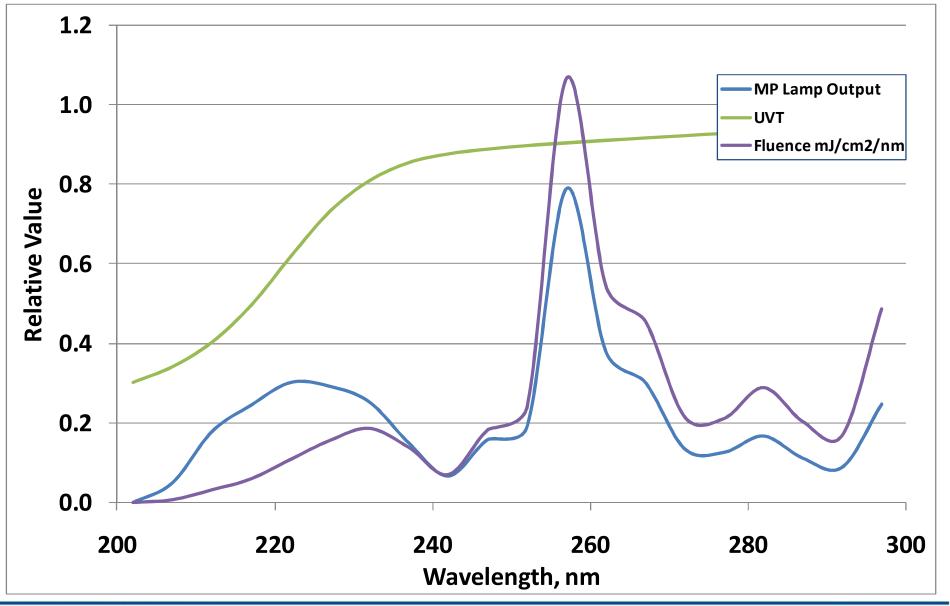
As in disinfection reactors, and unlike the EEO, D_L is independent of:

- Lamp type (MP or LP), lamp efficiency or spectral output
- UV transmittance
- \circ path length that UV traverses in a reactor
- Unlike disinfection reactors, however, D_L in AOP reactors is dependent on
 - \circ peroxide concentration
 - \circ scavenging potential of the water
- It is therefore a water dependent, but reactor independent parameter that can be used to specify the characteristic of the water

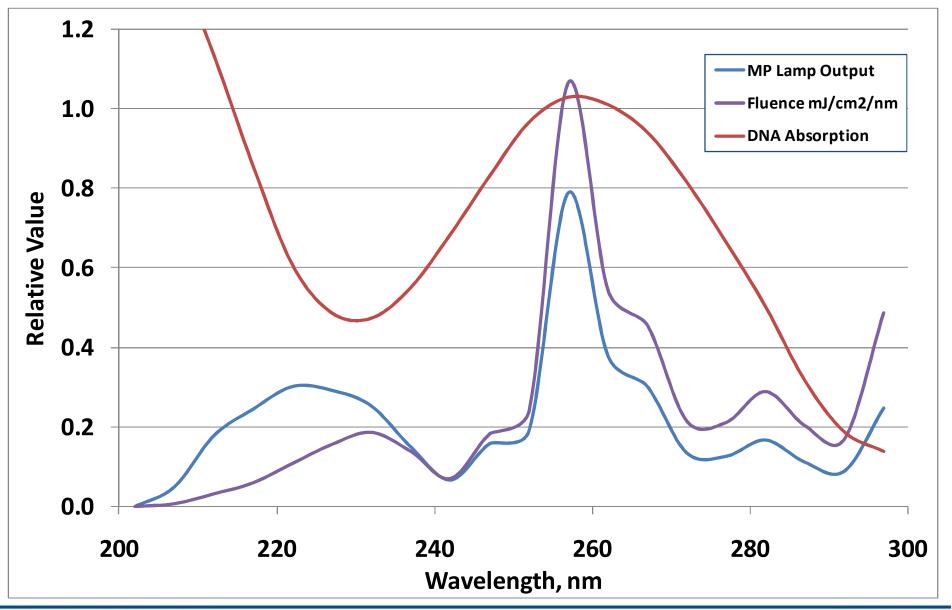


Spectral Effects

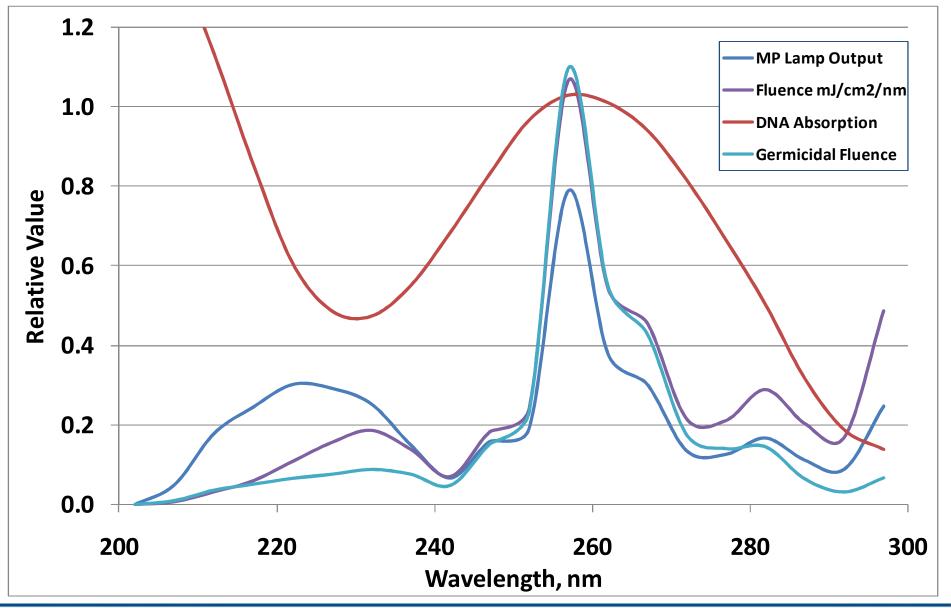
- MP Lamps emit UV in a broad band between 200 and 300 nm (where peroxide absorbs)
- Therefore full background spectral absorbance of water must be included when using MP lamps


Lamp Output and UV Transmittance

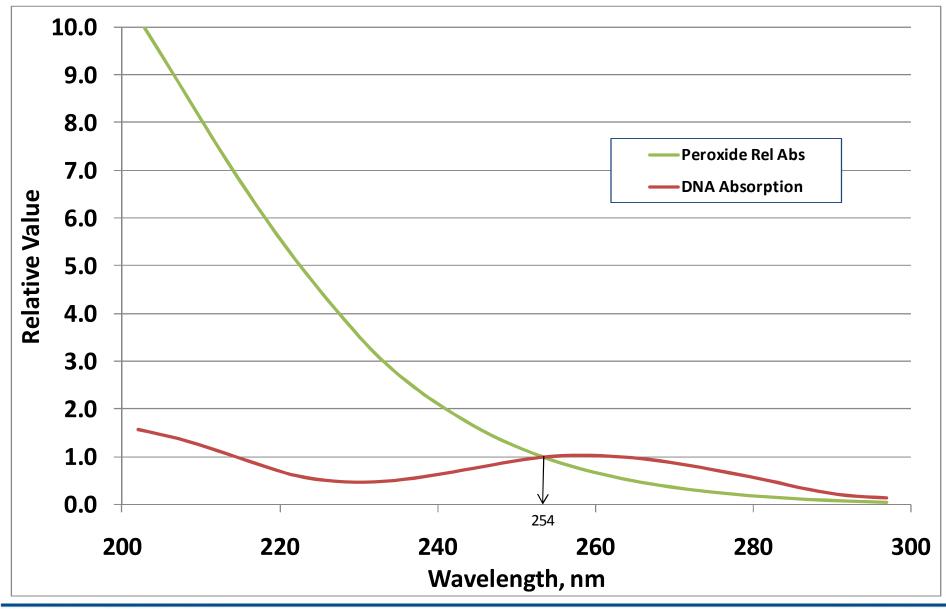
Making Water and Air Safer and Cleaner


UV Fluence (Dose)

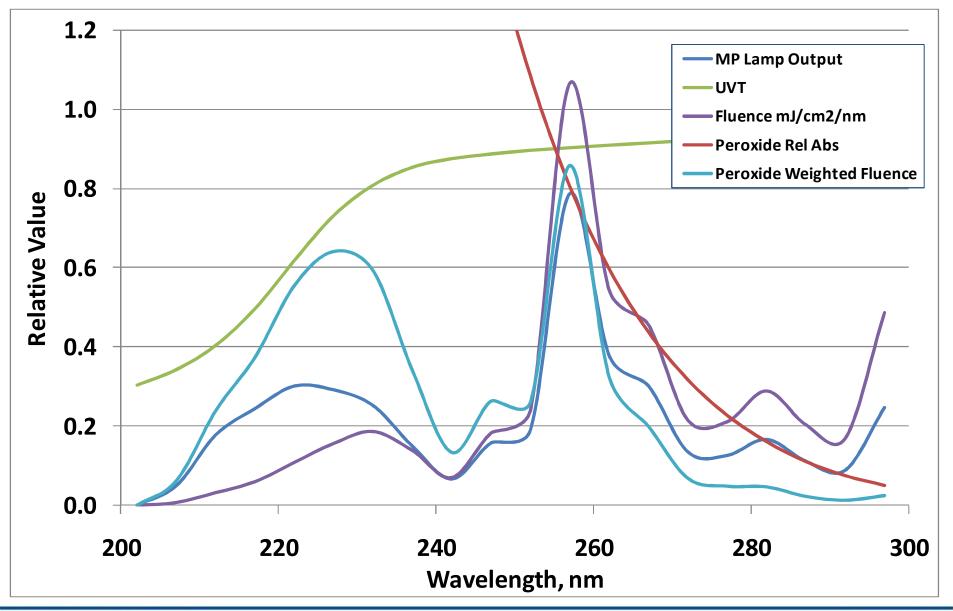
Making Water and Air Safer and Cleaner

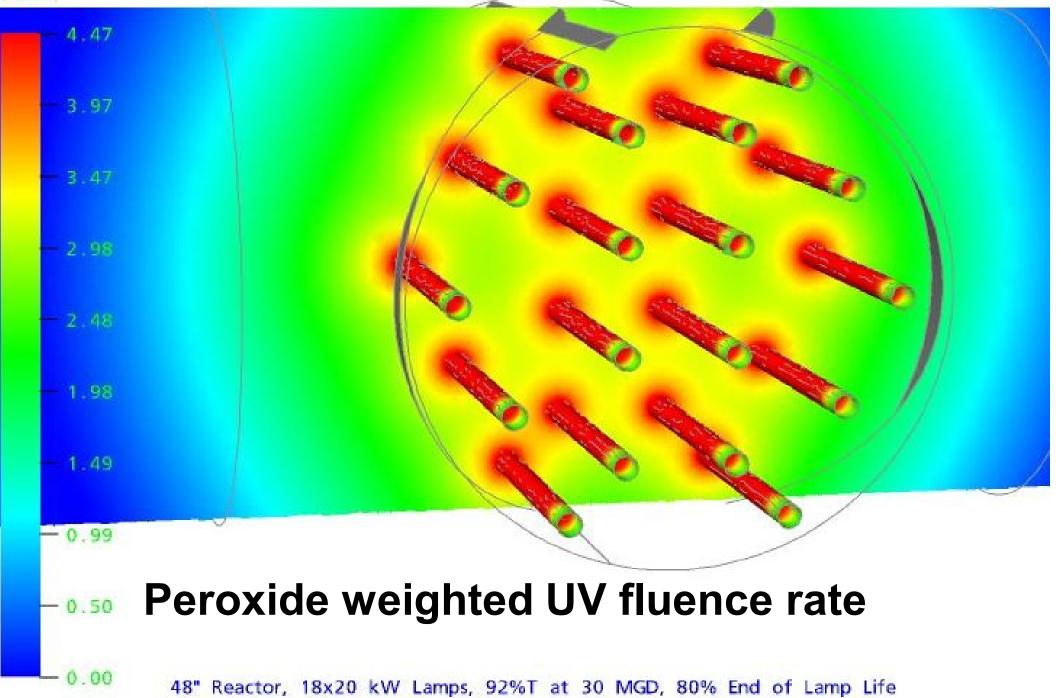

Germicidal Action Spectra

Making Water and Air Safer and Cleaner

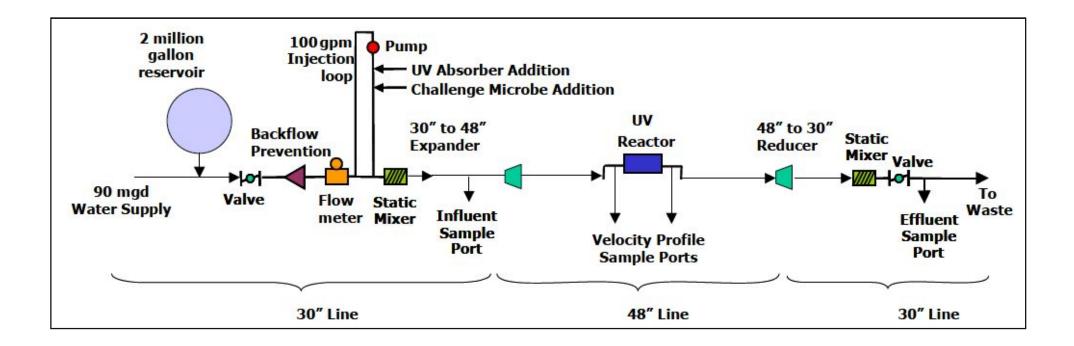

Germicidal Dose (Fluence)

Making Water and Air Safer and Cleaner


Peroxide Relative Absorbance


Making Water and Air Safer and Cleaner

Peroxide Weighted Dose (Fluence)



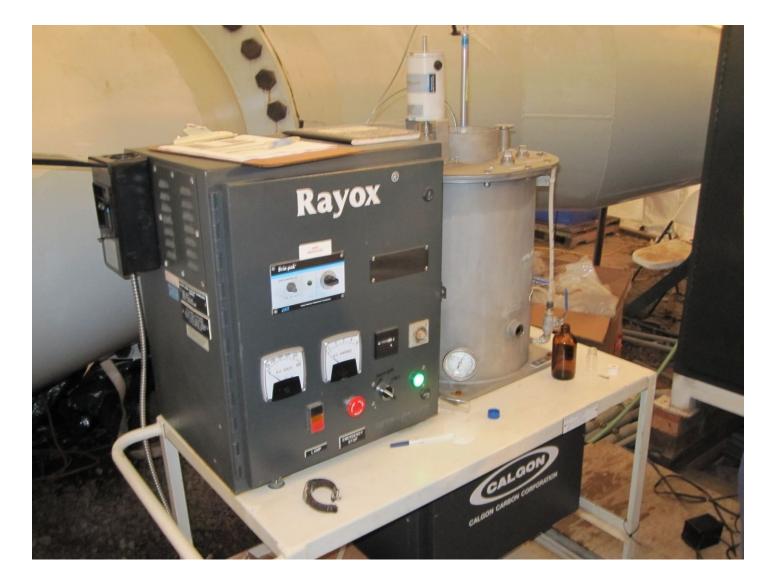
LogFluence (INLET)

Full Scale and Bench Testing at Portland UV Validation Site

Portland UV Validation Site

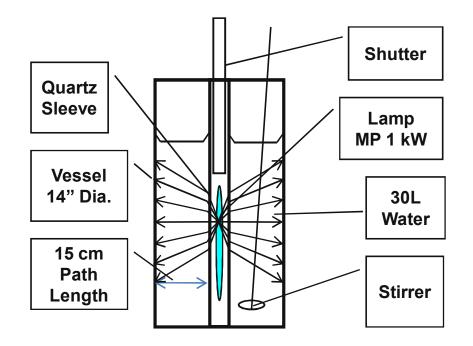
UVT	96.8 – 98.6	%	
TOC	0 – 1.4	mg/L	
Hardness	38 – 144	mg/L	
Alkalinity	34 – 169	mg/L	
рН	5.8 - 8.8		
Temp	11 – 18	°C	
Chlorine	0	mg/L	

High quality groundwater feed Outfall to Columbia Slough Can accommodate UV absorbers (LSA, Superhume), seeded microbes (MS2, T1, T7), and chemical additions (MIB, geosmin)

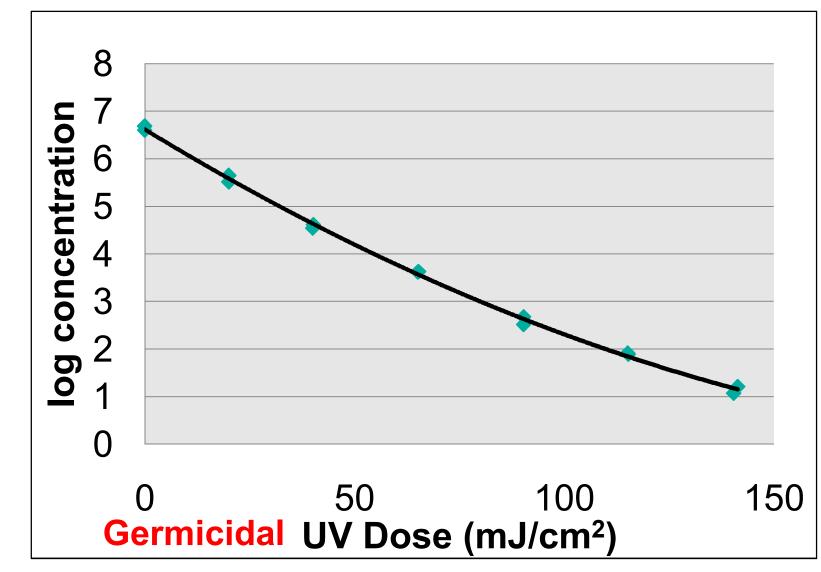

Portland UV Validation facility

Making Water and Air Safer and Cleaner

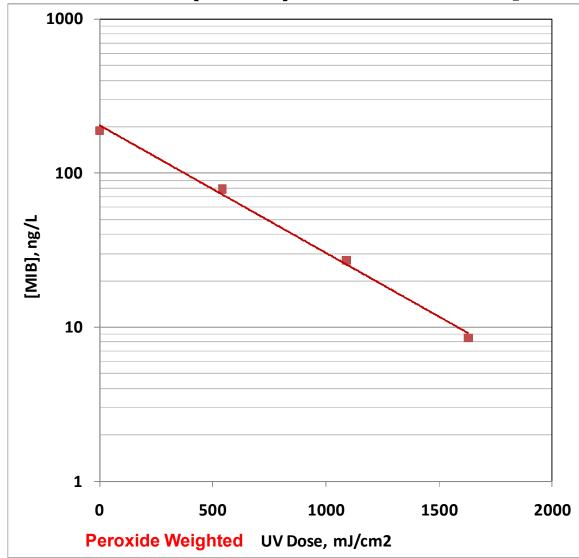
Annular Batch Test Reactor



Measurement of D_L

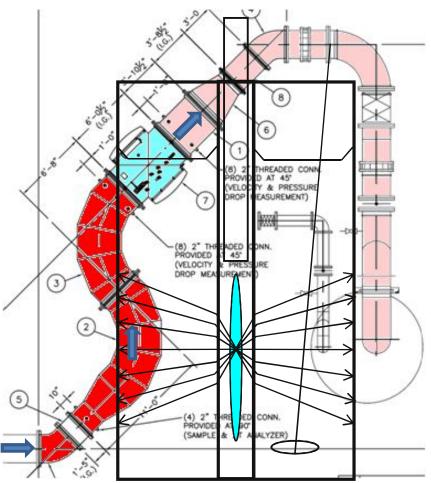

Batch Reactor

- 30 L mixed reactor
- More accurate than collimated beam
- 1 kW Medium Pressure Lamp
 - Same spectral Output as Full Scale Reactors
 - Reduces scale up errors for MP lamp spectral output
- > 14 cm Path Length
 - More accurate scale-up than Collimated Beam



Bioassay Dose-Response (MS2)

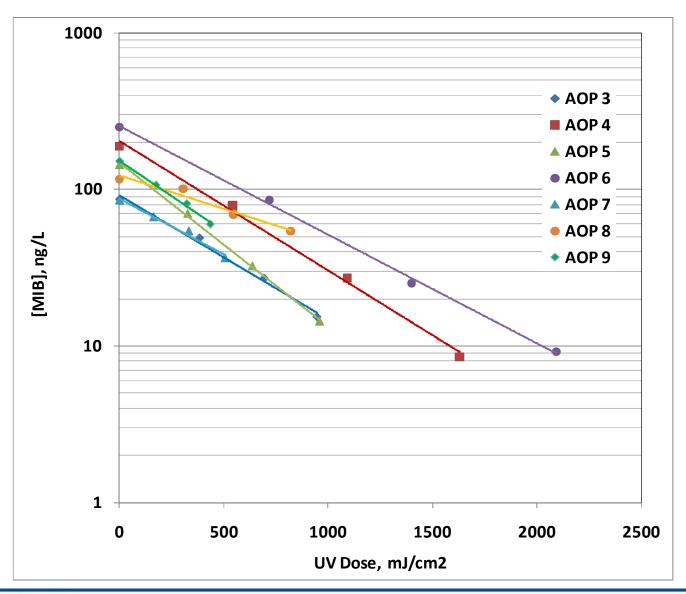
Taste and Odor (MIB) Dose Response



Making Water and Air Safer and Cleaner

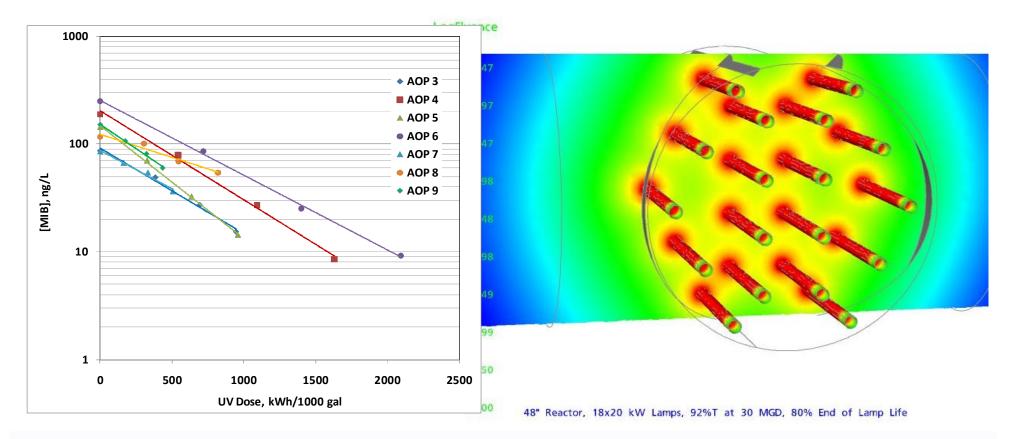
Use of bench results and CFD to predict full-scale AOP

- Adjust UVT, add H₂O₂, MIB and Geosmin, upstream of full-scale reactor
- Draw off influent water to fill batch reactor. Take influent and effluent samples
- Timed exposure within batch reactor produces peroxide-weighted doseresponse curves for target compounds
- Dose-response results and CFD are combined to predict full scale performance and compare with measured results

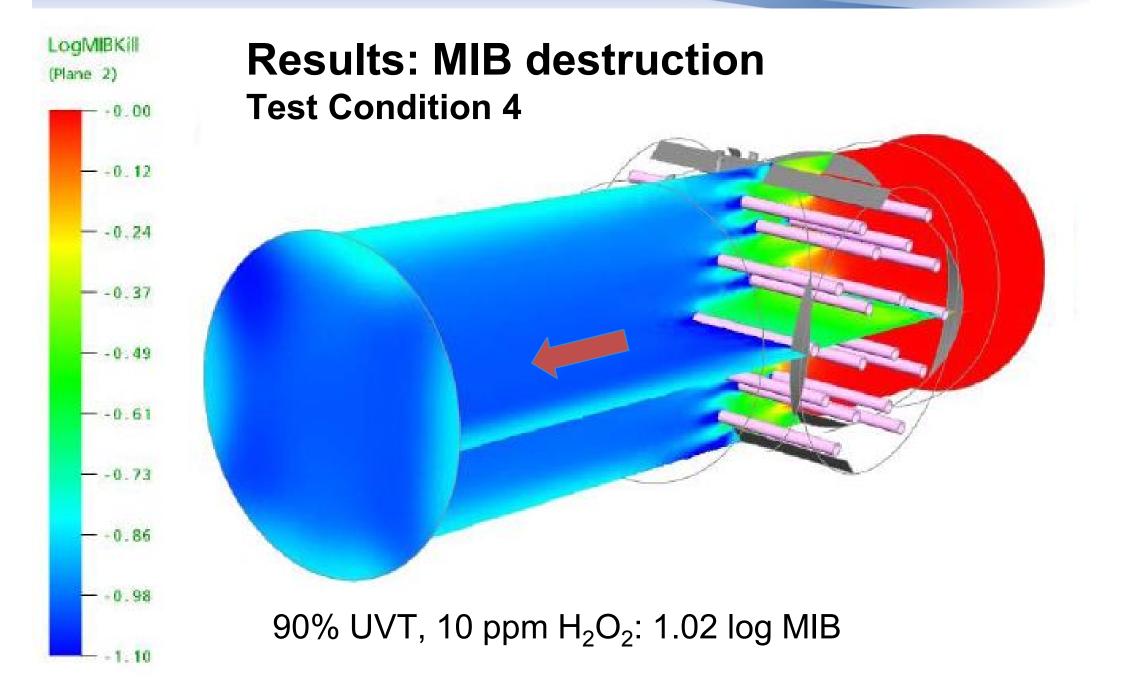

Test Plan and Scale-Up Methodology

Test ID	AOP3	AOP4	AOP5	AOP6	AOP7	AOP8	AOP9
UV Transmittance (%)	94.9	95.4	89.6	95.4	90.6	90.1	84.6
H ₂ O ₂ Concentration (mg/L)	4.53	4.22	9.35	4.56	9.82	4.02	15.22

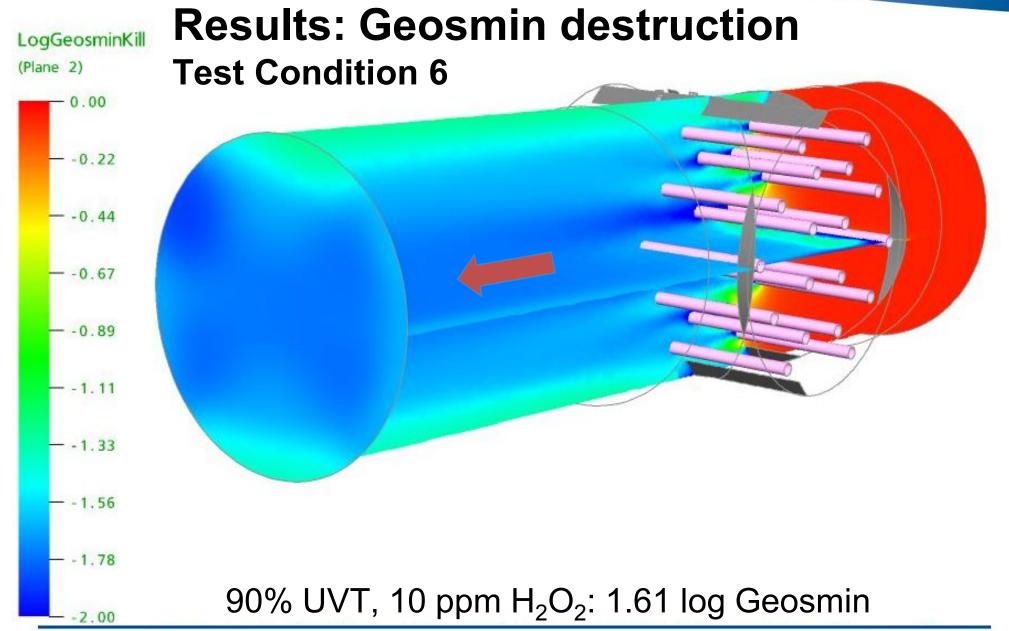
- Seven test conditions, varying UVT, [H₂O₂], number of lamps (9 lamps @ AOP6)
- Unlike bioassay testing, a dose per log destruction (D_L) must be determined for each test condition via bench-scale dose-response curves


Batch Test Results

Making Water and Air Safer and Cleaner



CFD Modeling cont....



- Intensity modeling → peroxide-weighted Fluence in each of the meshed CFD cells
- Combine with $D_L \rightarrow MIB/Geosmin destruction in each CFD cell$
- Then with Fluid Dynamics to get the entire reactor performance

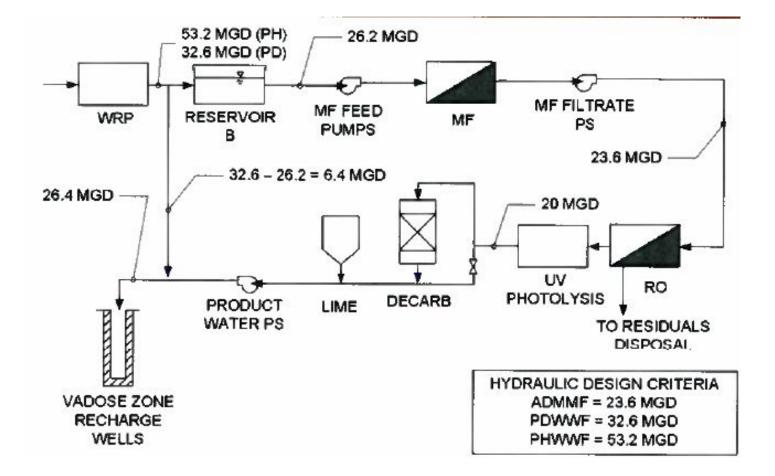
Making Water and Air Safer and Cleaner

Predicted vs. Measured MIB and Geosmin Destruction

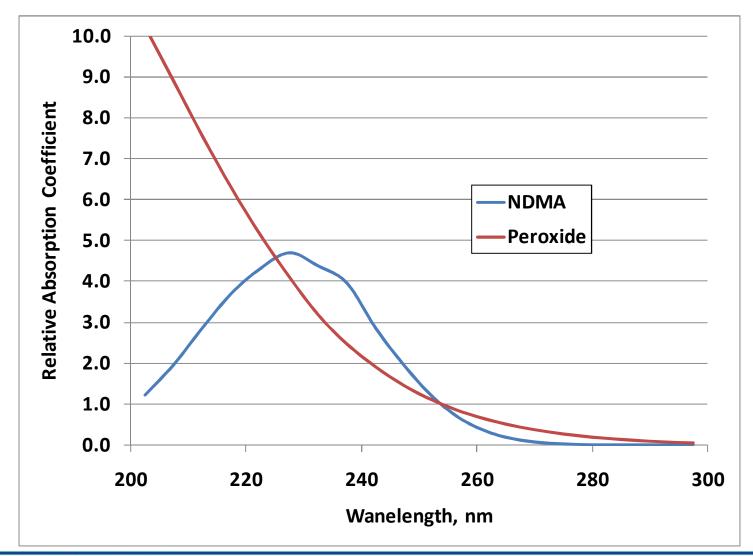
Test ID	3	4	5	6	7	8	9
MIB Predicted Log i	0.47	1.02	0.52	1.27	0.27	0.29	0.3
MIB Measured Log i	0.48	1.04	0.55	1.25	0.35	0.22	0.31
Deviation, log i	0.01	0.02	0.03	-0.02	0.08	-0.07	0.01
Geosmin Predicted Log i				1.61	0.33	0.37	0.31
Geosmin Measured Log i				1.67	0.44	0.37	0.36
Deviation, log i				0.06	0.11	0.00	0.05

- The performance of a full-scale UV/H₂O₂ AOP system can be reliably predicted from bench scale testing of a representative sample of water and a surrogate test compund (e.g. MIB, geosmin) and CFD
- D_L inversely proportional to k_{OH}
- Other compounds with varying treatability with UV/H₂O₂ (e.g. varying k_{OH}) can be accurately modeled using this approach

City of Scottsdale Advanced Water Treatment Facility Expansion

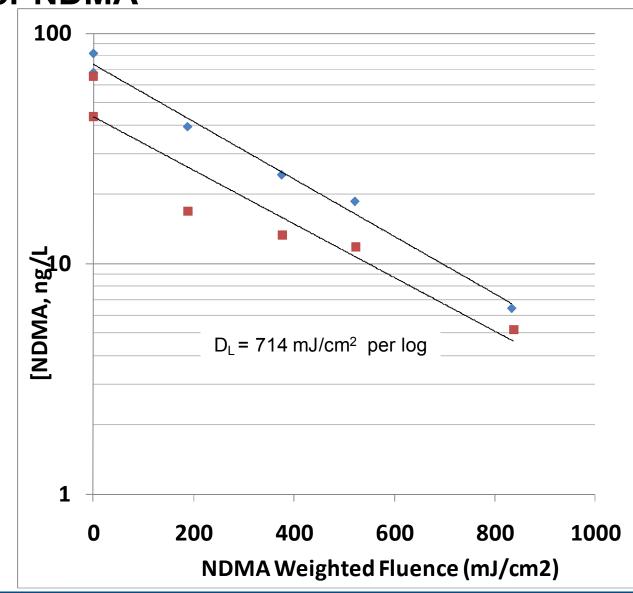

UV Coordination Meeting: Calgon

Indirect Potable Reuse Scottsdale Arizona

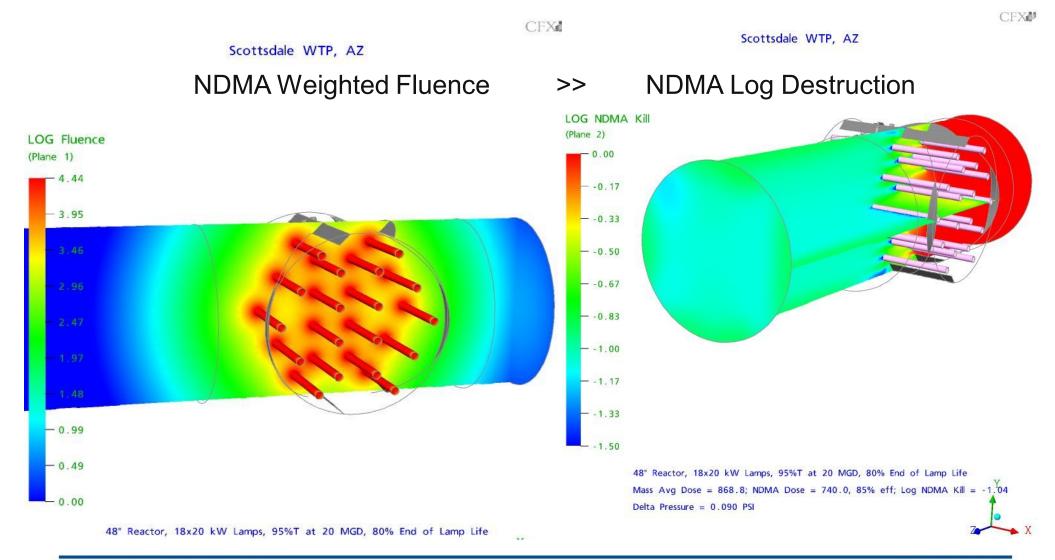


Application of Technique to NDMA Scottsdale

- NDMA is of particular interest to water reuse applications
- Present after the final MF/RO treatment of sewage plant effluent for Indirect Potable Reuse (IPR).
- NDMA is unique in AOP treatment as its destruction by UV AOP is predominantly by direct photolysis and not via the hydroxyl radical.



Relative Absorption Coefficient


Dose per Log (D_L) of 714 mJ/cm²/log - typical for NDMA

Making Water and Air Safer and Cleaner

CFD for Scottsdale NDMA Destruction

CalgonCarbon

NDMA D_L

- > Unlike peroxide the D_L for NDMA is independent of both the peroxide concentration and the water UVT.
 - the destruction is by direct photolysis and therefore the value of 714 mJ/cm²/log obtained is typical of NDMA in any water
- This is the same as in disinfection reactors where the dose response and therefore D_L of an organism is independent of the water quality or UV absorbance.
- Therefore modeling NDMA in UV/AOP reactors is much more akin to disinfection reactors except that the action (absorption) spectrum is at lower wavelengths.

Conclusions


- Peroxide weighted Dose per log (D_L) can be used in CFD modeling to accurately predict the performance of the full scale UV AOP system from empirical performance data generated from bench scale testing.
- This empirical method greatly simplifies the CFD modeling of an AOP reactor where otherwise the simultaneous chemical reactions would need to be modeled. It is also more reliable due to its empirical base.
- DL is independent of equipment type but dependent on water quality and so could be used to specify the performance requirements of UV AOP systems and then checked in performance testing of the installed system

Advantages of specifying UV reactors using D_L

- Reduces risk for Consultant
 - $_{\odot}$ Can independently measure and specify
 - $\circ\,$ Not dependent one vendor testing water
- Reduces risk to Purchaser/Owner
 - Can be measured in a performance trial
 - Not going to get some fly-by-night vendor hiding behind nefarious water quality parameters
- Reduces the risk for the Vendor
 - No surprises in unknown OH⁻ scavengers showing up in the water

